Behavioral detection of passive whisker stimuli requires somatosensory cortex.
نویسندگان
چکیده
Rodent whisker sensation occurs both actively, as whiskers move rhythmically across objects, and in a passive mode in which externally applied deflections are sensed by static, non-moving whiskers. Passive whisker stimuli are robustly encoded in the somatosensory (S1) cortex, and provide a potentially powerful means of studying cortical processing. However, whether S1 contributes to passive sensation is debated. We developed 2 new behavioral tasks to assay passive whisker sensation in freely moving rats: Detection of unilateral whisker deflections and discrimination of right versus left whisker deflections. Stimuli were simple, simultaneous multi-whisker deflections. Local muscimol inactivation of S1 reversibly and robustly abolished sensory performance on these tasks. Thus, S1 is required for the detection and discrimination of simple stimuli by passive whiskers, in addition to its known role in active whisker sensation.
منابع مشابه
A comparison of neuronal and behavioral detection and discrimination performances in rat whisker system.
We used the rat whisker touch as a model system to investigate the correlation between the response function of cortical neurons and the behavior of rats in a sensory detection versus discrimination task. The rat whisker-barrel system is structurally well characterized and represents one of the main channels through which rodents collect information about the environment. In experiment 1, we re...
متن کاملInformation processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits.
Rodent somatosensory cortex contains an isomorphic map of the mystacial whiskers in which each whisker is represented by neuronal populations, or barrels, that are separated from each other by intervening septa. Separate afferent pathways convey somatosensory information to the barrels and septa that represent the input stages for 2 partially segregated circuits that extend throughout the other...
متن کاملVibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.
The following experiments determined that the somatosensory whisker system is functional and capable of experience-dependent behavioral plasticity in the neonate before functional maturation of the somatosensory whisker cortex. First, unilateral whisker stimulation caused increased behavioral activity in both postnatal day (P) 3-4 and P8 pups, whereas stimulation-evoked cortical activity (14C 2...
متن کاملDetection of low salience whisker stimuli requires synergy of tectal and thalamic sensory relays.
Detection of a sensory stimulus depends on its psychophysical saliency; the higher the saliency, the easier the detection. But it is not known whether sensory relay nuclei differ in their ability to detect low salient whisker stimuli. We found that reversible lesions of either the somatosensory thalamus or superior colliculus blocked detection of a low salience whisker conditioned stimulus (WCS...
متن کاملBehavioral modulation of tactile responses in the rat somatosensory system.
We investigated the influence of four different behavioral states on tactile responses recorded simultaneously via arrays of microwires chronically implanted in the vibrissal representations of the rat ventral posterior medial nucleus (VPM) of the thalamus and the primary somatosensory cortex (SI). Brief (100 microsecond) electrical stimuli delivered via a cuff electrode to the infraorbital ner...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 23 7 شماره
صفحات -
تاریخ انتشار 2013